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1. Motivation

The confinement of quarks inside baryons and mesons is a feature of the strong interactions

only at low temperatures. At sufficiently high temperatures hadrons melt and quarks and

gluons form a plasma. Numerical simulations of QCD support the expectation that this

process takes place in a smooth manner and the high- and low-temperature regimes are

analytically connected through a crossover. As one increases or decreases the quark masses,

the situation changes and, at some point, a finite temperature phase transition occurs. This

phase transition is related to symmetries that are either badly broken or only approximate

when the quarks have their physical masses. For massless quarks, chiral symmetry is

exact: it is spontaneously broken at low temperatures and it gets restored in a chiral phase

transition at finite temperature. In the opposite limit, when the quarks are heavy, they

are only weakly coupled to the gluons. As the quark mass becomes much larger than the

typical energy scale of the strong interactions, ΛQCD ≈ 250 MeV, the quarks decouple and

gluons are the only relevant degrees of freedom. In the limit of infinitely heavy quarks, the

global center symmetry of Yang-Mills theory is no longer explicitly broken by the quarks’

triality and it becomes an exact symmetry of the theory. When the temperature is about

300 MeV, the center symmetry breaks spontaneously at a phase transition [1 – 3]. Since

quarks transform non-trivially under center transformations, the breaking of the center

symmetry implies deconfinement.

Yang-Mills theory provides a simplified framework in which the phenomenon of con-

finement can be investigated without facing the more difficult numerical problems related

– 1 –



J
H
E
P
0
2
(
2
0
0
8
)
0
4
1

to dynamical fermions. Moreover, the pure gluon dynamics is quite rich and many inves-

tigations have been performed to study various interesting features of Yang-Mills theory.

For instance, string effects in the static quark potential have been observed numerically [4].

The study of topological objects and of their relevance for the mechanism of confinement

is an active field of investigation [5]. A systematic study of SU(N) Yang-Mills theory for

various N is a research topic that aims at understanding the way in which the large N limit

is approached [6, 7]. This paper deals with another important characteristic of Yang-Mills

theory, namely the order of the deconfinement phase transition.

About 25 years ago, Svetitsky and Yaffe conjectured [8] that the critical behavior of

a gauge theory at the deconfinement transition can be described by a scalar field theory

with a symmetry corresponding to the center of the gauge group. In fact, if one integrates

out the spatial components of the gluon field in (d + 1)-dimensional Yang-Mills theory,

one obtains an effective action for the scalar field represented by the Polyakov loop. The

corresponding scalar field theory is defined in d dimensions and, in general, its action is very

complicated. However, if the deconfinement phase transition happens to be second order,

as one approaches the critical point, the correlation length diverges and universal critical

behavior arises. Hence, the details of the complicated effective action become irrelevant:

only the center symmetry and the dimensionality of space determine the universality class.

Svetitsky and Yaffe’s conjecture has been checked in many numerical simulations in

Yang-Mills theory with various gauge groups, both in 2+1 and in 3+1 dimensions. In those

cases in which the deconfinement phase transition is second order, the universality class

has indeed turned out to be the one predicted by Svetitsky and Yaffe. In 3+1 dimensions,

SU(2) Yang-Mills theory has a second order deconfinement phase transition [9 – 14] in the

universality class of the 3-dimensional Ising model [15, 16]. However, in 3 + 1 dimensions

no other pure gauge theory has been found to have a second order deconfinement phase

transition [17 – 26]. In 2+1 dimensions, SU(2) Yang-Mills theory again has a second order

deconfinement phase transition, now in the universality class of the 2-dimensional Ising

model [27, 28]. Since in 2+1 dimensions fluctuations are stronger than in 3+1 dimensions,

there are two more cases in which the deconfinement phase transition is second order. At

its deconfinement phase transition, (2 + 1)-dimensional SU(3) Yang-Mills theory shows

the same critical behavior as the 2-dimensional 3-state Potts model [28 – 30]. The group

Sp(2) has the same center Z(2) as SU(2), and the deconfinement phase transition of the

corresponding (2 + 1)-d Sp(2) Yang-Mills theory is again in the universality class of the

2-dimensional Ising model [31]. For other gauge groups, the deconfinement phase transition

of the corresponding pure gauge theory has turned out to be of first order [32, 33].

In this paper, we examine SU(4) Yang-Mills theory in 2 + 1 dimensions because it is

one of the last remaining unsettled cases. The original study on coarse lattices indicated

that the transition is second order [34]. The improved numerical results presented in [35]

show that, on coarse lattices, the transition is weakly first order. For finer lattices, the

deconfinement phase transition appeared to be second order, perhaps belonging to the

universality class of the 2-dimensional 4-state Potts model. This is a particular case of

the 2-d Z(4)-symmetric Ashkin-Teller model which has lines of critical points along which

the universality class and the critical exponents change continuously. The authors of [35]
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pointed out that it is difficult to obtain a definite answer unless one considers rather large

volumes and they could not rule out a weak first order phase transition in the continuum

limit. The need for large volumes and fine lattices was also emphasized in [33].

In this paper we present numerical evidence for a weak first order deconfinement phase

transition in SU(4) Yang-Mills theory in 2 + 1 dimensions. Interestingly, although there

is an infinite set of different available universality classes, the system deconfines with non-

universal behavior. The center symmetry does not play a role in determining the order

of the deconfinement phase transition. Only when the transition is second order does

the center symmetry determine the universality class. As we conjectured in [31], the

order of the deconfinement phase transition is determined by the size of the group. In

the low-temperature confined phase, the dynamics of Yang-Mills theory is governed by

glueballs. The number of glueball states — i.e. the number of singlets in the tensor product

decomposition of adjoint representations — is essentially independent of the gauge group.

On the other hand, the dynamics of the high-temperature plasma phase is determined

by deconfined gluons, whose number is given by the number of generators of the gauge

group. If there is a large mismatch between the number of relevant degrees of freedom in

the confined and the deconfined phases, the phase transition does not proceed smoothly

as a second order transition. Instead an abrupt discontinuous first order transition takes

place. This conjecture is supported by numerical simulations which show that the strength

of the first order transition increases with the size of the gauge group. Further evidence

was provided by studies of Yang-Mills theory with the exceptional gauge group G(2) [36].

The group G(2) is the smallest, simply connected group with a trivial center. Therefore,

in G(2) Yang-Mills theory there is no symmetry argument that implies the presence of

a finite temperature deconfinement phase transition. However, since G(2) (which has 14

generators) has a rather large size, G(2) Yang-Mills theory has a first order deconfinement

phase transition in 3 + 1 dimensions [37 – 39]. Various aspects concerning the problem of

confinement in G(2) Yang-Mills theory have been investigated in [40, 41].

The rest of the paper is organized as follows. In section 2, we describe the standard

lattice formulation of Yang-Mills theory, the observables that we consider, and the finite-

size scaling analysis used to determine the order of the phase transition. The numerical

results are presented in section 3, followed by our conclusions.

2. SU(4) Yang-Mills theory on the lattice

2.1 The action and the observables

We perform numerical simulations of SU(4) Yang-Mills theory on a periodic lattice in 2+1

dimensions. We consider the standard Wilson plaquette action

S[U ] = −
β

4

∑

�

ReTr U� = −
β

4

∑

x,µ<ν

ReTr (Ux,µUx+µ̂,νU
†
x+ν̂,µU †

x,ν), (2.1)

where the link parallel transporter matrices Ux,µ ∈ SU(4) are group elements in the fun-

damental representation. All dimensionful quantities are expressed in units of the lattice
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spacing. The bare dimensionful gauge coupling β is related to the usual gauge coupling g

in the continuum by β = 8/g2. The path integral measure and the partition function Z

then take the form
∫

DU =
∏

x,µ

∫

SU(4)
dUx,µ, Z =

∫

DU exp(−S[U ]). (2.2)

The Polyakov loop [1, 2]

Φ~x =
1

4
Tr

(

P
Nt
∏

t=1

U~x,t,d+1

)

(2.3)

is the trace of a path-ordered product of link variables along a loop wrapping around

the periodic Euclidean time direction. Here Nt = 1/T is the extent of the lattice in

the Euclidean time direction, which determines the temperature T in lattice units. The

expectation value of the Polyakov loop is given by

〈Φ〉 =
1

Z

∫

DU
1

N2
s

∑

~x

Φ~x exp(−S[U ]), (2.4)

where Ns is the extension of the lattice in the spatial directions. The Polyakov loop rep-

resents a scalar field that transforms non-trivially under symmetry transformations in the

center subgroup Z(4) of SU(4). Hence, a non-vanishing expectation value of the Polyakov

loop indicates the spontaneous breakdown of the center symmetry and thus signals decon-

finement. However, in a finite periodic volume spontaneous symmetry breaking — in the

sense of a non-vanishing order parameter — cannot occur. Therefore, in the finite-size

scaling analysis discussed below, we will consider the expectation value of the magnitude

of the Polyakov loop 〈|Φ|〉. In a finite volume this quantity is always non-vanishing but it

approaches zero when one takes the thermodynamic limit in the confined phase. Another

quantity that is useful for distinguishing the confined from the deconfined phase is the

probability distribution for the Polyakov loop,

p(Φ) =
1

Z

∫

DU δ

(

Φ −
1

N2
s

∑

~x

1

4
Tr(P

Nt
∏

t=1

U~x,t,d+1)

)

exp(−S[U ]). (2.5)

In the confined phase p(Φ) has a single peak centered at Φ = 0. In the deconfined phase,

on the other hand, it has four degenerate maxima at Φ = Φ0 exp(ikπ/2), where Φ0 is a

positive real number and k = 0, 1, 2, 3. When the deconfinement phase transition is first

order, the confined and the deconfined phases coexist and can be distinguished by their

different values of the Polyakov loop even at the phase transition. In that case, close to

the phase transition one thus observes five maxima of the distribution p(Φ). The relative

weight of the confined and deconfined peaks changes as one crosses the phase transition. On

the other hand, when the deconfinement phase transition is second order, the high- and

low-temperature phases become indistinguishable at criticality. The confined maximum

becomes broader and broader as the critical temperature is approached from below and,

at criticality, the width of the peak diverges. When the temperature is increased further,

the four Z(4)-symmetric deconfined peaks emerge smoothly from the broad distribution of
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the Polyakov loop. In the limit of very high temperatures, one can perform an analytic

perturbative calculation of the effective potential for the Polyakov loop [42 – 46].

Other useful observables that characterize the deconfinement phase transition are the

Polyakov loop susceptibility χ, defined by

χ = N2
s

(

〈|Φ|2〉 − 〈|Φ|〉2
)

, (2.6)

and the specific heat C given by

C =
1

3N2
s Nt

(

〈S2〉 − 〈S〉2
)

. (2.7)

For a first order transition it is interesting to also consider the latent heat Lh. As we

said above, in the case of a first order transition one can distinguish the confined from the

deconfined phases even at the transition. One can then define the action densities sc and

sd for the confined and the deconfined phases, respectively. The latent heat is defined as

the difference in the action density between the two phases at the critical temperature and

it is given by

Lh = sd − sc. (2.8)

The fluctuations in the action attain their maximum when the two phases have the same

probability. It then follows that, in the thermodynamic limit, the maximum Cmax of the

specific heat is given by

Cmax =
3N2

s Nt

4
L2

h. (2.9)

For a second order deconfinement phase transition the latent heat vanishes since the con-

fined and deconfined phases become indistinguishable at the critical point.

2.2 Finite-size scaling

Away from a phase transition, the susceptibility of an extensive quantity scales with the

volume. This scaling behavior changes as we approach a phase transition and the fluc-

tuations become stronger. For a first order transition, the susceptibility of an extensive

quantity increases with the square of the volume. This scaling behavior follows from the

coexistence of the two phases. In fact, in general, an observable has different values in the

two phases. Since the observable is extensive, its susceptibility scales with the square of

the volume. In case of a second order phase transition, the susceptibility scales faster than

the volume but — unlike for a first order transition — not as fast as the square of the

volume. The exponent that characterizes the scaling behavior depends on the observable

and on the universality class of the phase transition.

The method we have used in the finite-size scaling analysis of our numerical data is

the following. For a given lattice size N2
s × Nt, we perform a set of numerical simulations

at various couplings β across the deconfinement phase transition. Using the Ferrenberg-

Swendsen re-weighting technique [47, 48] we determine a pseudo-critical coupling βc,Ns,Nt

from the maximum of the Polyakov loop susceptibility. We then repeat this procedure for
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various values of the spatial lattice size Ns. For a first order phase transition the critical

coupling depends on the spatial volume as

βc,Ns,Nt
= βc,Nt

+ a0
N2

t

N2
s

+ . . . (2.10)

where βc,Nt
is the critical coupling in the limit of infinite spatial volume at fixed temporal

extent Nt.

Up to corrections to scaling, the data for the Polyakov loop susceptibility density

χ/N2
s collected at different couplings β and for different lattice sizes N2

s ×Nt collapse onto

a single universal curve once they are plotted as a function of the finite-size scaling variable

x = (Ns/Nt)
2 (β/βc,Ns,Nt

− 1). The corrections to scaling can then be easily measured at

the maximum of the curve

χmax

N2
s

=

(

χmax

N2
s

)

∞

+ b0
N2

t

N2
s

+ . . . (2.11)

A similar formula holds for the maximum of the specific heat

Cmax

3N2
s Nt

=
1

4
L2

h + c0
N2

t

N2
s

+ . . . (2.12)

3. Discussion of the numerical results

3.1 Simulation details

We have performed simulations on lattices with Nt = 3, 4, and 5, and for spatial sizes

Ns as large as 20 Nt. We have used a standard combination of heat-bath [49] and over-

relaxation [50 – 53] algorithms to update the various SU(2) subgroups of SU(4) [54]. We

have simulated with a ratio of over-relaxation to heat-bath updates of 4/1 and 1/1, and

we find no significant difference between these two choices. For each set of β,Nt, and Ns,

we have generated at least 105 configurations to be used for measurements. These runs

are sufficiently long such that for the smaller physical volumes with e.g. Ns/Nt = 10, we

see O(50-100) tunneling events between the various bulk phases. For the larger volumes

like Ns/Nt = 20, this is reduced to O(10) tunnelings. We expect that this is a reasonable

sampling of the various bulk phases.

3.2 Monte Carlo histories and Polyakov loop distributions

In figure 1, we plot the Monte Carlo histories of the Polyakov loop and the plaquette expec-

tation value, configuration by configuration, for a 602 × 3 lattice at β = 20.40. The system

spends a long time in a particular phase, characterized by the value of Φ, before it rapidly

tunnels to a different phase, in which it again remains for a significant period of Monte

Carlo time. In this particular run, we see the confined phase, in which Φ fluctuates around

0, and four deconfined phases, in which Φ varies around the four values Φ0 exp(ikπ/2).

The lower plot shows that the plaquette changes simultaneously with the Polyakov loop,

between two similar but still distinguishable values. This suggests that the system is close
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Nt Ns βc,Ns,Nt

3 26 20.251(8)

28 20.271(6)

30 20.288(7)

36 20.3230(25)

42 20.351(5)

48 20.363(4)

60 20.390(4)

72 20.388(5)

4 32 25.966(14)

36 26.019(14)

40 26.065(9)

48 26.097(10)

52 26.135(12)

56 26.173(10)

64 26.203(11)

80 26.192(9)

5 34 31.64(4)

40 31.75(4)

46 31.72(4)

50 31.77(3)

56 31.91(4)

60 31.977(26)

66 32.012(24)

100 32.090(22)

Table 1: The finite-volume critical couplings for various values of Ns and Nt, with bootstrap

errors.

to the phase transition, and that the deconfinement transition is first order, with coexisting

confined and deconfined phases. However, the small jump in the plaquette value indicates

that the transition may well be rather weak. This simulation is quite typical in that we

see about 10 tunneling events occur in this large volume.

In figure 2, we show the probability distributions of the complex-valued Polyakov

loop for simulations on 362 × 3 lattices at three different β values, ranging from low to

high temperature. At low temperature, there is just the confined phase, while at high

temperature there are four deconfined phases. At β = 20.26, the system is apparently

quite close to the transition temperature and the five bulk phases coexist. Figure 3 shows

the probability distributions of the plaquette value for the same simulations. We find only

a single-peak distribution, which varies smoothly with β. In the case of a normal-strength

first order transition, close to the critical temperature one would expect to see two distinct

peaks. In the present case, the discontinuity in the plaquette value is clearly visible in the

Monte Carlo history — as shown in the bottom part of figure 1 — but due to its small
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size, it does not stand out in the plot of the probability distribution.

3.3 Polyakov loop susceptibility

We use re-weighting of the various ensembles to determine the location βc,Ns,Nt
of the peak

of the Polyakov loop susceptibility χ. This is an accurate method and we show typical

results in figures 4 and 5. We use the bootstrap method to calculate both the error in χ

for each individual ensemble, and the error in βc,Ns,Nt
extracted from the re-weighting of

several ensembles. We list the finite-volume critical couplings in table 1 for the various

simulations we have performed.

If the deconfinement transition is of first order, the infinite-volume critical coupling

should be approached asymptotically as (Nt/Ns)
2, as described in Equation (2.10). The

data as shown in figures 6, 7, and 8 display exactly this behavior. In determining the

infinite-volume critical coupling for the various Nt values, there is some systematic error

involved in the choice of the extrapolation range. One does not know how large Ns has to

be before linear behavior sets in. Let us first discuss the Nt = 3 data. We start by fitting

all of the data, then omit one at a time the data for the smaller values of Ns. The results

are listed in table 2, with a statistical error included for each fit. For Nt = 3, we see that

the fit does not improve as data is omitted, so the optimal fit includes all of them. For

the final error estimate, we use the jackknife method applied to the optimal data set. We

quote a final result of βc,Nt
= 20.414(5). The optimal fit and this extrapolated value are

also shown in figure 6.

We apply exactly the same procedure to the Nt = 4 results. From figure 7, we see

that a linear fit of all of the data gives βc,Nt
= 26.251(13), the error being statistical only.

However, the quality of the fit is poor, with χ2/d.o.f. = 17.4/6. Omitting the data for

smaller Ns, the quality of the fit does not improve, in fact it becomes worse, as listed in

table 2. The small Ns data do not seem to be at fault, as significant fluctuations occur at

larger Ns. A quadratic fit gives βc,Nt
= 26.26(3) and χ2/d.o.f. = 17.2/5, so the data show

almost no quadratic behavior and the extrapolated value agrees very well with the linear

fit. Hence, the optimal choice seems to be to use all of the data. Performing a jackknife

error analysis on this set, the final result we quote is βc,Nt
= 26.251(16).

For both Nt = 3 and 4, a linear extrapolation appears valid for a fitting range

(Nt/Ns)
2 ≤ 0.015. We expect that the same should hold for Nt = 5. Looking at the

data in figure 8, two of the data lie outside this range. At sufficiently small Ns, one does

expect to see deviations from linearity. A linear fit of all of the data gives a very poor qual-

ity of fit. When the two smallest Ns values are omitted, χ2/d.o.f. improves significantly,

from 26.1/6 to 7.8/4, giving βc,Nt
= 32.22(4), the error being statistical only. As listed

in table 2, the fit improves further if the next two small Ns data are discarded. However,

we believe that this is excessive and gives the impression of a more accurate extrapolation

than is warranted. Using the linear regimes of Nt = 3 and 4 as a guide, we conclude that

the optimal fit excludes only the two smallest Ns data. For comparison, we also fit all

of the data using a quadratic form, which gives βc,Nt
= 32.24(6) and χ2/d.o.f. = 14.9/5.

The extrapolated value is completely consistent with that from a linear fit, although the
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Nt Ndata βc,Nt
χ2/d.o.f.

3 8 20.414(4) 6.9/6
7 20.415(4) 6.2/5
6 20.416(5) 5.5/4
5 20.418(6) 4.8/3
4 20.416(10) 4.6/2
3 20.417(18) 4.5/1

final value 20.414(5)

4 8 26.251(13) 17.4/6
7 26.253(16) 17.0/5
6 26.253(20) 17.0/4
5 26.26(3) 16.2/3
4 26.24(3) 8.0/2
3 26.22(3) 2.8/1

final value 26.251(16)

5 8 32.14(4) 26.1/6
7 32.18(4) 16.2/5
6 32.22(4) 7.8/4
5 32.21(5) 7.4/3
4 32.164(21) 0.69/2
3 32.153(5) 0.02/1

final value 32.22(8)

Table 2: The infinite-volume critical couplings for the various values of Nt and the quality of the

linear extrapolations, where some of the smaller Ns data are discarded.

quadratic fit is somewhat inferior. Using the jackknife method on the optimal set, we quote

a final value for Nt = 5 of βc,Nt
= 32.22(8).

We also investigate the finite-size scaling behavior of the Polyakov loop susceptibility.

In figures 9, 10, and 11, we plot the rescaled susceptibility χ/N2
s as a function of the

finite-size scaling variable, x = (Ns/Nt)
2 (β/βc,Ns,Nt

− 1), for Nt = 3, 4, and 5. We are

assuming here that the exponents are those of a first order transition. We see that, close

to the critical temperature, the data do indeed collapse onto a single universal curve. This

is further evidence of the first order nature of the deconfinement transition.

3.4 Specific and latent heats

Besides the Polyakov loop, we wish to use another thermodynamic quantity in order to

determine the order of the phase transition. We have attempted to measure the latent heat

Lh by simulating directly at the appropriate pseudo-critical coupling βc,Ns,Nt
. Based on the

value of the Polyakov loop, we have divided each ensemble into confined and deconfined

configurations. We have then measured the action in each phase and have determined

the discontinuity. Unfortunately, this method has some difficulties due to the somewhat

arbitrary cut in the value of the Polyakov loop used to distinguish confined from deconfined

configurations. We have found that it is more accurate to measure Cmax, the peak in the

specific heat.
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Nt Ns Cmax/(3N2
s Nt) × 104

3 24 13.66(7)

26 11.81(6)

28 10.22(6)

30 8.95(6)

36 6.46(4)

42 4.89(3)

48 3.84(4)

54 3.13(3)

60 2.69(4)

72 2.01(3)

4 32 3.722(17)

36 2.960(16)

40 2.407(15)

48 1.69(10)

52 1.446(8)

56 1.255(12)

64 0.977(12)

80 0.635(13)

5 34 1.990(10)

40 1.436(6)

46 1.091(5)

50 0.925(4)

56 0.739(3)

60 0.646(3)

66 0.5352(29)

100 0.2406(26)

Table 3: The finite-volume maxima of the specific heat for various values of Ns and Nt, with

bootstrap errors.

In table 3, we list the finite-volume maxima of the specific heat for Nt = 3, 4, and

5. The quoted errors for each ensemble are calculated using the bootstrap method. In

figures 12, 13, and 14 we plot the data for Cmax/(3N2
s Nt) for Nt = 3, 4, and 5 respec-

tively, and for various values of Ns. It is no surprise that the data do indeed extrapolate

accurately in (Nt/Ns)
2, as a first order transition dictates. The infinite-volume values

Cmax/(3N2
s Nt)(∞) are quite small, and accurate data are needed in order to reach a reli-

able conclusion. Like the finite-volume critical couplings, one does not know a priori how

large Ns has to be before the linear regime in (Nt/Ns)
2 is reached. We find that omitting

the smaller Ns data does not improve the already very good linear fits, so all of the data

are used in the final analysis. The results of the fits are presented in table 4, where the

errors are calculated by the jackknife method.
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Nt Cmax/(3N2
s Nt)(∞) χ2/d.o.f.

3 5.66(22) × 10−5 5.8/8

4 5.5(5) × 10−6 0.65/6

5 1.19(11) × 10−6 0.42/6

Table 4: The extrapolated infinite-volume maxima of the specific heat, and the quality of the

linear fits. Errors are calculated using the jackknife method.

Using Equation (2.12), we convert the infinite-volume extrapolations into the latent

heat Lh. We extrapolate the dimensionless quantity N3
t Lh = Lh/T 3

c to the continuum

linearly in 1/N2
t , which describes the data very well. Our continuum determination is

Lh/T 3
c = 0.188(17), where the error is statistical, and the quality of the fit is χ2/d.o.f. =

0.90/1. With only three data points, it is not possible to estimate a systematic error by

varying the choice of fitting range. The transition clearly becomes weaker on finer lattices,

but its first order nature persists in the continuum limit.

4. Conclusions

Our results show that (2 + 1)-d SU(4) Yang-Mills theory has a first order deconfinement

phase transition. Large and fine lattices were important for reaching this result. In the

various extrapolations and universal curves, our assumption of using first order exponents

is well confirmed by the data. The first order nature of the transition is further supported

by the observed coexistence of the confined and deconfined phases for all three temporal

extensions Nt = 3, 4, and 5 that we have considered. It is much harder to independently

determine the critical exponents than to show consistency with an expected set. Since the

2-d Z(4)-symmetric Ashkin-Teller model has continuously varying critical exponents, the

challenge is particularly large. In [35], by including logarithmic corrections to scaling, the

data suggested a second order deconfinement transition belonging to the universality class

of the 2-d 4-state Potts model. The numerical data presented here suggest that this is

not the case. The determination of a non-zero latent heat in the limit of vanishing lattice

spacing shows that the deconfinement phase transition does not weaken to second order

but stays first order in the continuum limit.

It is surprising that so few gauge theories realize the Svetitsky-Yaffe scenario which only

applies when the deconfinement phase transition is second order. This may be particularly

surprising in the present case, in which the infinite set of different universality classes of

the 2-d Ashkin-Teller model would be available. In 3 + 1 dimensions, SU(2) = Sp(1)

Yang-Mills theory is the only pure gauge theory with a second order deconfinement phase

transition. In 2 + 1 dimensions, the transition is second order only for SU(2), SU(3),

and Sp(2) Yang-Mills theory. Even though all symplectic groups Sp(N) have the same

center Z(2), the transition becomes first order as N increases, in both 3 + 1 and 2 + 1

dimensions. Interestingly, the 3-d Z(N)-symmetric spin model belongs to the universality

class of the U(1)-symmetric XY model for N ≥ 5, i.e. the symmetry is enhanced at the

critical point [55]. However, the corresponding (3+ 1)-d SU(N) gauge theory is unaffected
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by this peculiar critical behavior because its deconfinement transition is first order of a

strength increasing with N . Indeed, as we conjectured in [31], not the center but the

size of the gauge group determines the order of the deconfinement transition. In 3 + 1

dimensions all Yang-Mills theories whose gauge group has more than three generators have

first order transitions. As we now know, in 2 + 1 dimensions only the Yang-Mills theories

whose gauge group has at most ten generators (namely SU(2), SU(3), and Sp(2), which has

ten generators), have a second order deconfinement phase transition. An interesting case

for future study is (2+1)-d G(2) Yang-Mills theory. Since the exceptional group G(2) has a

trivial center, there is no symmetry reason for a deconfinement phase transition and there

may hence just be a crossover. In the absence of a non-trivial center, a second order phase

transition can be ruled out on theoretical grounds, because it would require unnatural fine-

tuning of some parameter. If the 14 deconfined G(2) gluons at high temperature cannot

smoothly crossover to the low-temperature regime governed by a small number of glueball

states, (2 + 1)-d G(2) Yang-Mills should have a first order deconfinement phase transition.

Since the 15 SU(4) gluons behave in this way, based on the size of the gauge group, one

may expect the same for G(2).
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Figure 1: The Monte Carlo histories of the Polyakov loop and the plaquette on a 602 × 3 lattice

at β = 20.40, close to the deconfinement transition. The system tunnels between the confined and

four deconfined phases, with the plaquette value tracking the change in the Polyakov loop.
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Figure 2: The probability distributions of the Polyakov loop on 362×3 lattices at β = 20.0 (top),

20.26 (middle) and 20.5 (bottom). At low temperature, there is a single confined phase. Close to

the critical temperature, we observe coexistence of the confined with the four deconfined phases.

At high temperature, there are only the four deconfined phases. Because of the finite length of the

simulation, the four deconfined phases are not equally sampled.
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Figure 3: The plaquette value distributions for the 362 × 3 simulations shown in figure 2. Close

to the critical temperature, at β = 20.26, we do not find two well-separated peaks, as one would

expect for a normal-strength first order phase transition.
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Figure 4: The Polyakov loop susceptibility χ as a function of β for 422 × 3 lattices, using re-

weighting of the combined ensembles. The critical coupling, where χ has a maximum, is determined

to be βc,Ns,Nt
= 20.351(5).
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Figure 5: The same as figure 4, for 482×4 lattices. The critical coupling is βc,Ns,Nt
= 26.097(10).
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Figure 6: The critical couplings βc,Ns,Nt
for Nt = 3 and a range of Ns, extracted from the peak

of the Polyakov loop susceptibility χ. A linear extrapolation in (Nt/Ns)
2 describes the data well,

as expected for a first order transition. The infinite-volume extrapolated value is βc,Nt
= 20.414(5)

(jackknife error) and the quality of the fit is χ2/d.o.f. = 6.9/6.
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Figure 7: The same as in figure 6, this time for Nt = 4. The extrapolated value is βc,Nt
=

26.251(16) and the quality of the fit is χ2/d.o.f. = 17.4/6.
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Figure 8: The same as in figures 6 and 7, this time for Nt = 5. For Nt = 3 and 4, the data

show linear behavior for (Nt/Ns)
2 ≤ 0.015. Hence, the two smallest Ns values are excluded from

the optimal fit. The extrapolated value is βc,Nt
= 32.22(8) and the quality of the fit is χ2/d.o.f. =

7.8/4.
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Figure 9: The rescaled Polyakov loop susceptibility χ/N2

s versus the finite-size scaling variable

L2(β/βc,Ns,Nt
− 1) for Nt = 3, where L = Ns/Nt. The data fall onto a universal curve, consistent

with first order exponents.
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Figure 10: The same as in figure 9, this time for Nt = 4. Again, the data are consistent with

first order exponents.
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Figure 11: The same as in figures 9 and 10, this time for Nt = 5. Again, the data are consistent

with first order exponents.
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Figure 12: The peak of the rescaled specific heat capacity Cmax/(3N2

s Nt) for Nt = 3 and

a range of Ns. A linear fit describes the data very well and gives the extrapolated value

Cmax/(3N2

s Nt)(∞) = 5.66(22)× 10−5. The quality of the fit is χ2/d.o.f. = 5.8/8.
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Figure 13: The same as in figure 12, this time for Nt = 4. Again, we linearly extrapolate to

obtain Cmax/(3N2

s Nt)(∞) = 5.5(5)× 10−6 and the quality of the fit is χ2/d.o.f. = 0.65/6.

0 0.003 0.006 0.009 0.012 0.015 0.018 0.021

(N
t
/N

s
)
2

0

5e-05

0.0001

0.00015

0.0002

C
m
a
x
/
(
3
N
S

2
N
t
)

linear fit
data
extrapolated value

Figure 14: The same as in figures 12 and 13, this time for Nt = 5. A linear fit of all the data

gives Cmax/(3N2

s Nt)(∞) = 1.19(11)× 10−6 and the quality of the fit is χ2/d.o.f. = 0.42/6.
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Figure 15: The latent heat Lh, taken from the Ns → ∞ extrapolation of Cmax/(3N2

s Nt). The

data are extrapolated linearly in 1/N2

t . The continuum value is N3

t Lh = 0.188(17) and the quality

of the fit is χ2/d.o.f. = 0.90/1.
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